



# **Windows Forensics**

Index: BT210

**Duration: 40 hours – 5 Days** 

## Description

Windows Forensics is an essential skill in the cybersecurity world. Covering a broad spectrum of aspects of the forensic investigation process performed on Windows OS. Participants will learn how different computer components work and how to investigate after a cyber-incident. The training will focus on developing hands-on capabilities of forensics teams or individual practitioners in these areas:

- Searching the hard drive for evidence
- Processing hidden files that are invisible or inaccessible containing past-usage information
- Performing a forensic analysis on a computer to reveal usage details, recover data, and accomplish a full inspection after the machine has been defragged or formatted

## **Target Audience**

This course targets participants with basic knowledge in IT or networking, who wish to have a deeper understanding of cyber investigations and the forensic process

- Law enforcement officers 8: intelligence corps
- Incident responders
- Computer investigators
- IT/network administrators

## **Pre-requisites**

ThinkCyber Level-1 Courses

### **Objectives**

- Accessing concealed files on the system and extracting relevant information from them
- Mastering the steps of incident response by exercising different practices of a forensics investigation, such as uncovering hidden data, Windows Registry monitoring and more
- Analyzing relevant case studies



#### **Module 1: Computer Hardware**

The first module will cover different components of computer hardware. Students will learn the main components of Storage-Disks, the structure of the Windows OS, and finally, the students will install their first virtual forensics stations.

#### Drives and Disks

- The anatomy of a drive
- o Data Sizes
  - Data Representation
  - Hexadecimal
  - ASCII
  - Binary
- o Volumes 8: Partitions
- o Disk Partitioning and the Disk Management Tool
  - MBR vs. GPT
  - Understanding UEFI
  - The HPA
- Solid State Drive (SSD) Features

## • Understanding Windows OS structure

- The filesystem
- o FAT
  - FAT structure
  - File allocation and deletion
- NTFS
  - NTFS structure
  - Volume Boot Record
  - Master File Table
- The EFS Encryption
- o Windows Directory Structure

# • Virtualizing a Forensics Workstation

- Setting up a Virtual Machine
- Installing and Configuring the VM
- o Preparing the environment



### **Module 2: Forensic Fundamentals**

This module will expose students to the internal components of the Windows OS. Students will learn about tools that will help them with the Forensics investigation process.

## Understanding Hashes and Encodings

- Hash as a Digital Signature
- o The Use of Hash for Forensics
- o Base Encodings

#### Windows Artifacts

- Startup files
- o Jump List
- o Thumbnail Cache
- Shadow Copy
- o Prefetch and Temp Directories
- o RecentApps
- o Registry Hives

#### Windows Passwords - Bypassing Windows Protection

- Encryptions in the Windows OS
  - Bit locker
  - NTLM
  - Kerberos
- Cracking Windows Passwords
- Cracking RAR/ZIP Passwords

#### Data and Files structure

- Hexadecimal Editing Tools
  - WinHex
  - HxD
- File structure
  - Headers and Trailer
  - Magic Number
- o Embedded Metadata
- o Working with clusters
  - Slack Space
  - Unallocated and Allocated Spaces



#### **Module 3: Collecting Evidence**

During this module, students will master techniques for collecting evidence, accessing and retrieving volatile and non-volatile information. Students will master techniques for collecting evidence, accessing, and retrieving volatile and non-volatile information.

## Forensic Data Carving

- Using HxD for Forensics Carving
  - Carving files from an existing File
- o Automatic File Carving Tools
  - Foremost
  - Scalpel
  - Bulk-Extractor

## Collecting Information

- o Indenting evidence of program execution
  - Extracting Registry Artifacts
  - Event Viewer
  - The Audition Policy
  - Windows System Metadata
- Detecting hidden files Using ADS
- Self-Extracting Archives (SFX)
- Collecting network information
  - Network Information
  - Network Connections
- o Sysinternals-Suite forensic tools
- Extracting credentials using NirSoft

#### Drive Data Acquisition

- Introduction to FTK-Imager
  - Exploring system files
  - Creating an Image
  - DD as an alternative image capture tool
- Capturing Volatile-Memory
  - Capturing a Memory-File
  - Capture methods and technics
  - Pagefile
  - Hiberfil.sys





#### **Module 4: Analyzing Forensic Findings**

In this module, students will understand how to uncover hidden information, detect tampered files, work with memory, and analyze the Ram.

#### Analyzing captured images

- o Features of FTK
  - Extracting Protected Files
  - Mounting an Image as a drive
  - Volatile Memory Capturing
- o MFT Dump
  - Identifying potential threats
  - Visualizing an MFT reconstruction using DMDE
- o Analyzing prefetch files
- Reconstructing Explorer with ShellBags

## Working with Volatile-Memory

- o Extracting Data from RAM
- o Identifying network connections
- Dumping processes from memory

## Registry analysis

- Using Access Data Registry Viewer to analyze Registry dumps
- o Finding user Information using Ntuser.dat and usrclass.dat
- Using CLI to Access the Registry
- o Extracting Data from Registry
- Forensics Findings in the Registry

**Case Study:** an in-depth examination of a recent cyber-attack and the corresponding forensics processes.





# Module 5: Data labelling and Report Writing

Participants will study different forensics reports prepared by investigators following past incidents and learn how to write a professional report, including which points to consider when addressing the documentation of findings of an event.

# • Introduction to report writing

- o Device Identification
- o Preservation of Data
- o Collecting Evidence
- Examination and Analysis
- o Documentation
- o Evidence Presentation
- o Final Guidelines